
Ball and Chain: Hashing is Dead, Long Live the Password 
 

 
Abstract 
Ball and Chain offers the possibility of perfect security 
for even the weakest of passwords.  For far too long, 
password breaches have plagued the information tech-
nology industry.  For far too long, the strength of a us-
er’s credentials has been dependent on the complexity 
of the plaintext password.  For far too long, algorithmic 
cost has plague the adoption of slow hashing algo-
rithms.  Ball and Chain makes use of a vulnerability in 
the process of a malicious attacker.  Ball and Chain can 
make password breaches a thing of the past.  Ball and 
Chain can make password policies a thing of the past.  
Ball and Chain can push us towards a safer, smarter, 
lighter web. 

1. The Problem 
Ever since the virtual dawn of the Internet, the security 
of our identity, systems, and information has been 
guarded by the venerable password.  From “letmein” to 
“god” these secret sequences have protected the gates 
of the web from the chaos of a world without authenti-
cation.  But what was once the golden standard has fall-
en low in recent years.  It feels like not a month can go 
by without the headlines screaming about some new 
database breach in which millions of passwords are 
leaked onto the Internet.  But I kid you not.  We can 
solve this once and for all.  Let’s talk about the problem 
in detail.  The methods that developers use to store 
passwords are intrinsically broken. 

1.1. Plaintext or Encoded 
If you store the passwords for all your users in plaintext 
or encoded with something like base64, you’re gonna 
have a bad time.  It still surprises me just how common 
these techniques are, even in today’s decently paranoid 
climate.  Obviously, if a malicious actor gains access to 
a database containing user passwords stored in the 
plain, they’re not going to have any trouble reading, 
using, and disseminating those passwords to the world.  
This is simply, a terrible password storage mechanism. 

1.2. Encrypted 
You may occasionally happen upon an application that 
stores the passwords for its users in encrypted form.  If 
done properly, encrypted credentials can be nefariously 
difficult to decrypt and make use of.  That being said, 
encryption is quite difficult to implement correctly.  
From weak cipher usage, to poor implementation of 
block cipher chaining.  If you mess up even a tiny bit, 
the attackers will easily find a way to discover the 
plaintext of the passwords from the access ciphertext.   

Beyond just a failing of the method by which the ci-
phertext is created the encryption of any plaintext data 
requires the storage of a plaintext key for later decryp-
tion.  This key is often taken by the attackers and used 
to decrypt all of the stored passwords.   Rendering them 
again, as plaintext. 

1.3. Fast Hashing 
The majority of modern applications call some type of 
fast hashing algorithm for the storage (and by exten-
sion) protection of user credentials.  Hashing algorithms 
have risen to the top for their ease of use, as well as 
their strength when properly utilized.  Since a hashing 
algorithm destroys the plaintext data that is sent into it 
at creation, the only way to find the plaintext password 
again, is to “crack” by way of brute force (dictionary, 
hybrid, etc..) the plaintext which was used to create the 
hash.  If the plaintext used in the creation of the stored 
hash was of sufficient complexity, the attacker will not 
be able to determine what it was within a reasonable 
time frame (before the heat death of the universe).  It is 
because of hashing algorithms (caveat: as well as unre-
stricted online attacks) that users are constantly bom-
barded with password complexity requirements.  It is 
because of hashing that we emphasize the “strong” 
password.  I want you right now, to briefly imagine a 
world without the need for complex or complicated 
passwords.  A world in which the password “goat” 
would give you the same level of security as the pass-
word “nicklebackisthebestBand5ev4r!!!”;  Because that 
is the world that we are working towards.  Let’s talk 
about a decent solution to the issue of password com-
plexity next. 

1.3. Slow (Adaptive) Hashing 
Slow or Adaptive hashing algorithms exist for one sim-
ple purpose, to take a long time to compute.  The pro-
cess of going from a plaintext to a computed hash value 
is elongated in order to make it far harder for an attack-
er to uncover the plaintext value via some sort of ex-
haustive search; since now the attacker must work far 
harder for each and every guess.  This is not a terrible 
solution to the issue of password complexity on the 
Internet today.  That being said, this isn’t the solution 
that you’re looking for.  For starters, if a user picks a 
terribly “weak” password; it can still be cracked with 
high certainty over a reasonable period of time.  That is, 
password complexity still matters when dealing with 
these hashing algorithms, it just matters less.  But wait, 
there’s more.  The use of slow hashing algorithms puts 
us in a bind.  In order to be able to support infrastruc-



ture at scale with slow hashing algorithms, your appli-
cation will need to pay in computation.  You will need 
faster computers, which cost more money, in order to 
be able to keep up with the necessary computational 
requirements at the same speed as before.  This is often 
why developers forgo any sort of adaptive hashing al-
gorithm for a simple fast hashing algorithm.  Why pur-
posefully take more resources for the same exact work?  
Especially if your developers just simply don’t expect 
that there will ever be a hack, or simply don’t really 
care… etc.  Furthermore, when we go to using slow 
hashing algorithms, we do not eliminate the threat.  We 
simply raise the bar of entry.  That is, a 12 year old on 
their laptop may no longer be able to crack all your 
passwords in a reasonable amount of time.  But he can 
just post them up for all his friends.  All he needs in 
order to one up you yet again, is more computational 
power.  Heaven help you if your adversary is organized 
crime, or a nation state.  When you use adaptive hash-
ing algorithms, all you’re really doing is entering into a 
computational war with your adversary.   And yes, 
that’s certainly a step in the right direction.  But secure 
concepts should not be built to be “better than” or 
“good enough for now.”  Great security is about com-
pletely halting your adversary in his tracks.  Great secu-
rity, gives up no ground. 

2. The Solution 
I would like to humbly present my own original work to 
you as the solution to all of this.  Ball and Chain pre-
sents us with the possibility of a password breach free 
future by entirely disrupting the ability for any adver-
sary to perform an offline attack against any passwords 
stored in this manner.  Before I get into the specifics of 
its operation however I would like to give a little back-
ground on how it is that Ball and Chain was invented. 

2.1. The Backstory 
For the longest while I have been thoroughly terrified 
by the nature of the information security industry.  I 
don’t think it’s any secret that we are failing at securing 
the Internet in any meaningful fashion. 

I don’t write up this backstory as a pat on the back for 
myself.   In fact, I’m not writing in detail at all.  What I 
want to stop in the middle of the flow of this article for 
is far more important.  Yes, I am quite proud of the 
work that I did in discovering this technique.  But this is 
not about me.  This is not about money.  This is not 
about fame.  This is a call to action.  Forget exploitation 
frameworks.  Forget sweet backdoors.  Forget incredi-
ble exploits.  Forget making a splash.  The Internet, and 
by extension, the world, needs our help.  We have a 
duty in this pivotal time to secure the future.  We are 
the modern equivalent of mathematicians in the time of 

Pythagoras, and what we do today has the ability to 
literally change the world.  Forget about thinking small.  
Forget about aiming for what you can hit.  We need 
people who are willing to fail for a chance to win big.  
We need people who are capable of dreaming big, los-
ing repeatedly, and maybe one day, winning big.  We 
need people who are willing to give up on trying to 
look cool with the next clever zero day in some un-
known protocol.  We need people who are willing to 
work on the things that actually matter.  People who are 
willing to solve problems, not puzzles.  Puzzles are 
academic.  Problems have real, kinetic weight.  If the 
story of what I did here can help even one person to 
dream big, from the bottom of my heart, it will have 
been worth it. 

I invented Ball and Chain in the middle of a panic at-
tack while driving through Montana.  Staring out the 
window, looking at the mountains towering over me.   
For over a year I had been dreaming of finding a better 
way to store passwords.  I felt a bit crazy for even 
thinking that it was possible I could come up with 
something that might do better than anything ever in-
vented before.  But I kept thinking anyway.  I kept 
working anyway.  Before Ball and Chain, I had been 
stuck working on a theory of ephemeral entropy for a 
while.  But it wasn’t getting anywhere.  Ball and Chain 
started as a simple idea, and quickly blossomed into 
something capable of storing passwords with infinite 
strength, something capable of completely removing 
the need for complex passwords, and something capa-
ble of storing ordered data (credit cards) in the same 
way (via a permutation of the algorithm) with the same 
level of secrecy.   

2.2. High Level Overview 
Here’s a high level view of how Ball and Chain works.  
It is first important to note that the reason it works at all 
is because it is quite literally an exploit against a vul-
nerability in the attack chain of an adversary as they 
attempt to breach your network.  Allow me to illustrate. 

Imagine you are an attacker, attempting to steal some 
information (like a credit card) from the corporate net-
work of Company-X.  Imagine you have shell access to 
the machine on which the information is stored.  That’s 
usually not too hard right?  Data Loss Prevention is 
actually quite difficult.  Keeping someone from being 
able to sneak information out of your network is quite a 
task.  So in this scenario, if what you’re after is some-
thing like a credit card, you’ll probably be able to get it.  
Maybe you simply read it via your shell access, then 
take a screenshot of the shell on your screen.  And 
voila, you have the information you were after. 



But now imagine a second scenario.  In this scenario, 
your job is not to steal one single credit card from my 
network via your remote shell.  Instead, I want you to 
steal 100 trillion trillion credit cards.  That would be 
quite a different scenario wouldn’t it?  You couldn’t 
simply copy and paste from your screen through.  You 
definitely couldn’t read all of them at once and take a 
screenshot.  Trying to move them all in one file would 
take some work.  And extracting them from the network 
via something like FTP would be next to impossible 
considering Company-X only has a finite upload speed 
onto the Internet.  In all reality, you will fail this test.  
You will not get all the credit cards. 

And here you have the simple explanation for what Ball 
and Chain is.  Forget credit cards.  We create a huge 
array of random data.  We tie user authentication via 
the venerable “password” to this titanic array of data.  
That is, you cannot tell whether or not the proper pass-
word was typed in, unless you have access to the gigan-
tic array of random data.  If the array is big enough, 
you’ll never be able to move it.  You certainly won’t be 
able to move it without being detected and thwarted. 

Simply put, if you need the array to be able to even 
make a guess as to what the password for any user is; 
and if you cannot get that array (because the array is too 
big to move out of the network).  Then you cannot even 
make a single guess as to what any user password may 
be.  Offline attacks will become obsolete. 

 

2.3. Technical Rundown 
Okay, so lets talk about one model by which you may 
do this.  Ball and Chain is still a work in progress, and 
so this outline demonstrates a viable model of produc-
tion by which Ball and Chain may be implemented in 
code, nothing more, nothing less. There is still a lot of 
work to be done (see “future direction”).  Let’s go 
through the steps of one implementation.  

2.3.1 Building the Array 
You need to create the huge array of random data first.  
You can use either true random, or a cryptographically 
secure pseudo random number generator.  If you choose 
to use pseudo random, make sure to throw out the seed 
that you used to create the array.  You want to be abso-
lutely positive that nobody can recreate the array from 
something like a seed, which would be easy to sneak 
out of your network. 

The next question to ask is: how large should you make 
the array?  Well, the simple answer is, “it depends.”  It 
depends on the specific layout of the application for 
which you are implementing the Ball and Chain pass-

word representation format.  Here are the two things to 
look at.   

One, what is the upload speed on your outbound pipe.  
That could be the connection between you and the In-
ternet.  That could be the connection between you and 
another potentially hostile network.  Wherever that pipe 
is, the rate at which data can be siphoned off through it 
should determine the size of the array.  For example, 
say that Company-Y has an outbound pipe of 6Mbps, 
an array on the size of 2 Terabytes would take a month 
to extract from the network.  That is, using the entire 
upload for an entire month.  Of course, this would be 
ridiculous, and nearly impossible to pull off, without 
being detected and thwarted.  And you can only imag-
ine what would happen if the adversary attempted to 
download all the data in a more stealthy manner.  It 
might take decades.  

The second thing to keep in mind when deciding the 
size of the array is what kinds of difficulty you would 
like an adversary who does somehow manage to get 
their hands on the array, to have in moving it around.  
For this, imagine that the attacker does somehow man-
age to get the array.  Perhaps they physically break into 
your datacenter and take the hard drives on which the 
data is stored.  How much difficulty would you like 
them to have in working with and disseminating the 
data?  Basically, just make sure that the array has a 
minimum size large enough to cause trouble if the at-
tacker wants to say, put the data in the cloud, or send it 
to all his friends to distribute the cracking.  Because 
yes, with Ball and Chain, even if they do somehow get 
the array (which should be basically impossible) then 
they still have to crack the passwords contained within. 

So, pick the size of your array.  It should basically be as 
large as you can make it.  Calculated for your specific 
network.  Then fill the array with securely generat-
ed/sampled (pseudo)random data.  

2.3.2 Creating a Password “hash” (representation) 
The storage of passwords via the Ball and Chain mech-
anism is actually surprisingly straightforward.  Assum-
ing we already have our array of random data.  Here is 
the first part of how we tie authentication to that array.  
When a user account is created, you must calculate the 
password representation by following something simi-
lar to this algorithm.  Select for your purposes, some 
cryptographically secure block cipher (or stream if you 
are so inclined).  I am currently partial to AES-128 in 
CTR mode.  This does take what was formerly a block 
cipher and turn it into what is in effect, a stream cipher.  
But the operation of the cipher is still the same.  Just 
with one added portion, the nonce.  The nonce func-



tions external to the application in the exact same way 
as a salt would have under a traditional hashing algo-
rithm.   

Here’s what we’ll do.   

1. Create a random nonce.  This nonce will be 
stored and treated just like a salt.  It will be 
supplied to the cipher when requested upon 
encryption and decryption of the linked cipher-
text.   

2. Go into your array of random data and select 
from it a multitude of pointers.  That is, specif-
ic locations within the array, down to the bit.  
It is important that you select more than one.  
The current recommendation that I have to of-
fer is somewhere on the order of ten.  Howev-
er, that is in no way optimized. 

3. Pad each pointer to be the same length. 

4. From each and every pointer you previously 
selected, take a sampling of the random data at 
that point within the array.  That is, if you have 
ten pointers all pointing to random locations 
within the array of random data, pull some X 
number of bits from the data immediately fol-
lowing each selected location.  (The amount of 
entropy to pull from each pointer is up to you.  
It should be great enough so as to avoid colli-
sions.  My current recommendation is some-
thing between 32 and 128 bits.) 

5. Take all the pointers and concatenate them in-
to a single stream.  It is very important at this 
point to make sure that the pointers as data are 
indistinguishable from random.  

6. Take all the random data sampled from each 
referenced location within the array, and con-
catenate them all together into a single stream.  
Feed this stream into a hashing algorithm such 
as sha256. 

7. Take the concatenation of all the pointers, and 
the hash resulting from the concatenation of all 
the sampled data.  Concatenate these two into 
a single stream.  At this point, the stream you 
are holding should appear completely random. 

8. Now grab your encryption algorithm.  Take 
the plaintext password that the user supplied 
when creating their account as the key to en-
crypt the stream of random data.  (Don’t forget 
to supply the nonce.)  Make sure that the data 
is random as a stream when provided to the 
encryption algorithm.  You can’t hand it to the 

algorithm in the form of a string, or base64 en-
coded or something.  It has to be true random 
within the character space.  (I’ll make sure to 
explain the emphasis in a second.) 

9. Take the generated ciphertext, and store it as 
the user hash.  (Along with the nonce as salt of 
course.) 

2.3.3 Authentication 
1. The user types in their password. 

2. Take the stored “hash” and nonce.  Use the 
password supplied as the key to decrypt the 
“hash” with your encryption algorithm. (Don’t 
forget the nonce if using CTR mode.) 

3. Take the resulting plaintext. And split the 
stream back into it’s corresponding parts.  The 
individual pointers, the hashed form of the 
sampled data. 

4. Go into your array of random data.  Go to each 
and every location pointed to by the pointers.  
Sample the data at each of those locations just 
as you did before. 

5. Take all the samples, and hash them in the 
same order as you did before, with the same 
hashing algorithm.  

6. Compare the two hashed streams (the one that 
came from the ciphertext and the one you just 
generated.)  If they match, we know with very 
very very high probability that the proper key 
was used to decrypt the ciphertext. 

7. This means, that the user inputted the proper 
password.  Authenticate the user. 

So what happens when an invalid password (key) is 
used?  By the nature of a cryptographicly secure en-
cryption algorithm, you should get some completely 
random output.  This is why it is so important that the 
plaintext we use is completely indistinguishable from 
random.  We don’t want there to be any indicators in 
the decryption as to whether or not the right key was 
used.  We want the only way to confirm the use of the 
proper key, to be via access to the array of random data.  
The array that should be too large for any adversary to 
ever get their hands on.  The “hashes” that we build can 
still be stored in a database just as before.  They’re just 
a simple small ciphertext.  What’s lovely about them 
though is that they’re meaningless without the array.   If 
you’ve properly implemented the algorithm, you could 
post your “hashes” publicly on the web.  Without the 
array, nobody will ever figure out what’s inside (what 
key was used). 



2.3.4 Some Known Pitfalls 
I really cannot stress enough just how theoretical Ball 
and Chain is.  The logic is sound.  It will work.  But I 
am not a cryptographer.  I’m not a mathematician.  I’m 
a crazy, idealistic, dreamer of an undergrad.  There may 
be things about this algorithm that could render it use-
less in its current form that I am just not noticing.  I still 
have quite a bit of work to do before I’ll feel safe telling 
the world that we have one “specific”, “secure” imple-
mentation.   But here are some things to keep in mind 
when thinking about this algorithm. 

1. This method only protects against offline at-
tacks.  You’re still on the hook to implement a 
good mechanism for mitigating online pass-
word attacks. 

2. Passwords can still be stolen from memory, or 
via phishing, or with a keylogger… etc. 

3. The data taken from each point in the array 
must be of enough entropy so as to mitigate 
the possibility of collisions. 

4. The number of pointers used in a single au-
thentication must be carefully constructed to 
ensure that the attacker cannot get away with 
stealing a small portion of your array.  That is, 
say you only used one pointer per hash.  But 
you had 1000 users.  If the bad guy steals one 
tenth of your array.  He should have the ability 
to determine the passwords of one tenth (100) 
of your users.  Because that one tenth of users 
have a single pointer, pointing within the one 
tenth of the array that he stole (approximately).  
The more pointers that you use, the greater the 
probability that he cannot get away with steal-
ing a tiny portion of the array. 

5. Make sure to hash the sampled data before en-
cryption when creating the password represen-
tation.  Here’s why.  This ensures that the at-
tacker needs access to every part of the array 
referenced by a pointer before he can check to 
see if the two hashes match.  If you stored the 
sampled data in plaintext, due to the length of 
the sampled data being great enough in entro-
py as to avoid collisions, the probability that 
any one pointer-data pair coming back as 
“true” and the used key not being the right 
one, would be astronomical.  That is, if you 
gave the sampled data in the plain within the 
ciphertext, confirming just one of them would 
confirm the key.  Which is actually even worse 
than just using one pointer data pair. 

6. Attackers can still make guesses against the ar-
ray via some approved portal.  For example.  If 
you have an application that accesses the array 
over the network, and the attacker compromis-
es the application, he can make guesses against 
user passwords online as the application.  This 
however, isn’t a huge deal.  Here’s why.  Yes, 
you should build defenses to detect and thwart 
any odd chain of authentication failures.  That 
should be in your design from tip number one.  
It’s still on you to stop online attacks.  That 
being said, if the attacker has access to a ma-
chine that the passwords flow through before 
or during authentication, he can just take them 
from memory.  This isn’t the biggest threat. 

7. Man In The Middle.  If you choose to store 
your array at a distance from your application, 
and access it over some network medium, I 
advise protection against any form of network 
level interception or interdiction.  SSL is the 
obvious solution.  However it is also important 
to think about what data the array gives up 
when queried.  Would you want the array to 
return the data from the locations referenced?  
Or would you want the array to simply reply 
back with a true/false to whether or not to au-
thenticate the user?  It really depends on your 
specific architecture and threat landscape. 

 

3. The Future 
There’s a lot of work to be done.  But the future of Ball 
and Chain is as bright as it gets.  We can stop the rising 
tide.  We can make offline attacks a thing of the past.  

3.1 In Code 
We do have a prototype/proof of concept written in 
python that demonstrates the viability of the Ball and 
Chain concept.  It is far from cryptographically secure 
at this time.  My hope for the future, is if I can get the 
resources to accomplish it, I would like to build an open 
source, public domain, library.  Something akin to 
OpenSSL, which could be quickly and easily imple-
mented in any project.   

3.2 Storage 
I get asked quite often, “can Ball and Chain store things 
like credits cards?”  Yes, absolutely.  I have a permuta-
tion of the Vanilla algorithm, which can be used to hide 
any sort of ordered data within the array.  The data can 
only be unlocked with access to the entire array; and 
only with the proper password.  Again providing the 
exact same level of security (theoretically infinite) for 



the storage of sensitive information like credit cards, 
social security numbers, etc.   

3.3 Further Research 
I have also spent quite a bit of time looking into ways in 
which the concept behind Ball and Chain can be used in 
other arenas within out field.  Suffice it to say, I do be-
lieve there are quite a few possibilities open for us in 
the future.   

Additionally, I have been looking into ways in which 
the random array model can be used as a sort of math-
ematical playground on which to build never before 
envisioned security tools. 

3.4 The Roadblocks 
Money, time, influence, I am a poor, young, unknown, 
undergrad.  I don’t have the resources at this time to 
present this password representation format to the vir-
tual masses as a viable alternative to password hashing.  
I don’t have capability currently to build and crypto-
graphically proof a secure library.  More than anything 
else, I need funding, and a platform from which to pre-
sent this idea to the world. 

4. The Promise 
Ball and Chain, completely precludes the possibility of 
offline attacks against your stored passwords with near 
certainty.  When coupled with a reasonable mitigation 
of any potential online attacks the need for complex 
passwords disappears.  No longer will users be pres-
sured into creating passwords they cannot remember.  
No longer will password policies plague the industry.  
We will literally be able to create, and use reasonable 
passwords again.  Forget the ridiculous modern pass-
word.  Ball and Chain will fix all of this for us. 

Will phishing attacks still exist?  Of course they will.  
Will it still be possible to steal a password from 
memory?  It absolutely will.  

But the complexity of the password has absolutely 
nothing to do with these things. It’s just as easy to steal  
‘golf’ from memory as it is to steal something crazy 
like ‘SooperSecret4523#$P33sward’. 

Ball and Chain will completely revamp the playing 
field. 


